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Outline

= Noise correlation

= SNR scaled reconstruction
* Obtaining images in SNR units

= Pseudo Replica Method

* Determining the SNR (and g-map) for any parallel imaging
reconstruction

= |[terative methods

* Non-Cartesian Parallel Imaging

= Regularization in Iterative Methods



Noise in Parallel Imaging

|dealized Experiment:

Noise covariance matrix
s =Ep

Yy y = <T]Y, m*’)

In practice, we are affected by noise

s=Ep+n

We can measure this noise covariance:

% Matlab

% eta:[Ncoils, Nsamples]
Psi = (1/(Nsamples-1))*(eta * eta');

Noise correlation



Psi Examples — 32 Channel Call

“Normal Coil” “Broken Coil”

Examination of the noise covariance matrix is an important QA tool. Reveals broken
elements, faulty pre-amps, etc.



Noise Pre-Whitening

Solving Linear Equations:
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X; : Random value with zersymean (= 0) and varfance o

Suppose you know that:

2 2 2
O3 = 50'1 — 50'2 Put less weight on this equation



Noise Pre-Whitening

We would like to apply an operation such that we have unit variance in all
channels:




Noise Pre-Whitening

More generally, we want to weigh the equations with the “inverse square
root” of the noise covariance, if

¥ =LL"
We will solve:
L 'Ax=L"'
Or:

x = (A"®TA) 7 AMO D

In practice, we simply generate “pre-whitened” input data before recon



Noise Pre-Whitening
Matlab:

%eta [Ncoils,Nsamples]

$psi [Ncoils,Ncoils]

%data [Ncoils,Nsamples]
%csm : Coil sensitivity map

psi = (1/(Nsamples-1l))*(eta * eta');

L = chol(psi, 'lower');
L inv = inv(L);

data = L _inv * data;
csm = L inv * csm;

$Now noise is “white”
%Reshape data and do recon




Noise covariance matrix

Example with test dataset

“Normal Coil” “Broken Coil”

1 2 3 4 5 6 7 8

At least two broken pre-amps



Noise Pre-Whitening — SENSE Example
White Noise “Normal Coil” “Broken Coil”
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ismrm demo noise decorrelation.m



SENSE - Image Synthesis with Unmixing
Coefficients

Aliased coil images Unmixing Coefficients

< L




SENSE - Simple Rate 4 Example
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Reconstruction in SNR Units

Reconstruction Pipeline

Raw data —| Signal Processing N Images

Calibration Data — Unmixing Coefficients




Reconstruction in SNR Units

Reconstruction Pipeline

. —1
Noise > ¥ — L Maintain unit scaling

l ot =1 SNR Units

Raw data — Signal Processing > Images [ 7 Images
ol =1 Idivide

Calibration Data —{ Unmixing Coefficients — RSS




Reconstruction in SNR Units

Reconstruc!




Pseudo-Replica Method

What if unmixing coefficients are never explicitly formed:

0’ =1 0’ =1
Raw data — SNR Scaled Recon —| Reference Image
subtract SNR

v
Add noise | SNR Scaled Recon Hp> © >cu9° . Mean
Replicas Signal

2 __
o =1 Repeat X times —i

Noise | || Noise
Replicas SD

1smrm pseudo replica.m



Pseudo-Replica Method — Example 256 trials

SENSE R4 GRAPPA R4
SNR UNMIX SNR PSEUDO SNR UNMIX SNR PSEUDO

g PSEUDO g UNMIX g PSEUDO




Advantage of Cartesian Undersampling

Cartesian Undersampling




Non-Cartesian Parallel MRI

To solve the general non-Cartesian case, we return to the original problem:

s=Ep  p=agmin{[Ep—s|}
It is not practical to solve with direct inversion in general.

But we can use a humber of different iterative solvers to arrive at the solution

* Conjugate Gradients
* LSQR (Matlab)

>> help lsqr
1sqgr 1sgr Method.
X = 1lsqr(A,B) attempts to solve the system of linear equations A*X=B
for X if A is consistent, otherwise it attempts to solve the least
squares solution X that minimizes norm(B-A*X)...

X = 1lsqr (AFUN,B) accepts a function handle AFUN instead of the matrix A.
AFUN(X, 'notransp') accepts a vector input X and returns the
matrix-vector product A*X while AFUN(X, 'transp') returns A'*X. In all
of the following syntaxes, you can replace A by AFUN...




lterative SENSE — First Cartesian

To use LSQR (or Conjugate Gradients), we “just” need to be able to write a function
that does the multiplication with E and E":

Let’s first look at a simple Cartesian case

Multiplication with EM

rho = zeros(size(csm)); %csm: coil sensitivities
$sampling mask: 1 where sampled, zero where not
rho(repmat (sampling mask,[1 1 size(csm,3)]) == 1) = s(:);
rho = ismrm transform kspace to image(rho,[1,2]);

rho = sum(conj(csm) .* rho,3);

Multiplication with E

S repmat (reshape(rho,size(csm,1l),size(csm,2)),[1l 1 size(csm,3)]) .* csm;
S ismrm transform image to kspace(s, [1,2]);
s= s(repmat(sampling mask,[l 1 size(csm,3)]) == 1);




lterative SENSE

If we have the multiplication with E and E™ implemented as a Matlab function:

function o = e cartesian SENSE(inp, csm, sp, transpose indicator)
sp: sampling pattern
% csm: coil sensitivities

oo

Iterative SENSE could be implemented as:

% s: vector of acquired data

E = @(x,tr) e cartesian SENSE(x,csm, (sp > 0),tr);
img = lsqr(E, s, le-5,50);

img = reshape(img,size(csm,1l),size(csm,2));

Cartesian SENSE Iterative SENSE

F 43500 I 3500

F 43000 I 3000

F 42500 F 2500




Quick note on the non-uniform FFT

To implement multiplication with E and E" in the non-Cartesian case, we need to do
the non-uniform Fourier transform'?2,

In this course, we will use Jeff Fesslers “nufft” package.¥We recommend you
download the latest version from:

http://web.eecs.umich.edu/~fessler/irt/fessler.tgz

$k: k-space coordinates [Nsamples, 2], range —pi:pi
$w: Density compensation weights
¥s: Data

*Prepare NUFFT

N = [256 256]; %$Matrix size

J =[5 5]; $Kernel size

K = N*2; $Oversampled Matrix size
nufft st = nufft init(k,N,J,K,N/2, 'minmax:kb');

recon = nufft adj(s .* repmat(w,[l size(s,2)]),nufft st);

'Keiner, J., Kunis, S., and Potts, D. Using NFFT 3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software, 2009
2Fessler ] and Sutton B. Nonuniform fast Fourier transforms using min-max interpolation. [EEE TSP 2003



lterative SENSE — non-Cartesian

To use LSQR (or Conjugate Gradients), we “just” need to be able to write a function
that does the multiplication with E and E":

Now we have the tools for the non-Cartesian case:

Multiplication with EM

samples = size(nufft st.om,1l); coils = numel(s)/samples;

s = reshape(s,samples,coils);

rho nufft adj(s .* repmat(sqrt(w),[l coils]),nufft st)./sqgrt(prod(nufft st.Kd));
rho sum(conj(csm) .* rho,3);

rho rho(:); I

Ensure operators are adjoint v

Multiplication witl}fE / From nufft init

repmat (reshape(rho £gé7€(csm,1),size(csm,2)),[1l 1 size(csm,3)]) .* csm;
nufft(s,nufft st)./sqgrt(prod(nufft st.Kd));

s .*repmat(sqrt(w)) [l size(s,2)]);

s(2);

n n n n
o




lterative SENSE — non-Cartesian

If we have the multiplication with E and E™ implemented as a Matlab function:

function o = e non cartesian SENSE(inp, csm, nufft st, w, transpose indicator)
% nufft st: From nufft init

% csm: coil sensitivities, w: density compensation

Non-Cartesian SENSE could be implemented as:

% s: vector of acquired data

E = @(x,tr) e non cartesian SENSE(x, csm, nufft st, w, tr);
img = lsqgr(E, s .* repmat(sqrt(w),[size(csm,3),1]), 1le-3,30);
img = reshape(img,size(csm,1l),size(csm,2));

APDue to definition of E

24 projections 24 projections
nufft only SENSE

Fully sampled




Regularization - Basics

Ax=b X = (AHA)_lAHb X = argmin{HAx —sz}

Adding constraints:
X, = argmin{ |Ax — b||2 -I-)L”L(X - XO)||2 }

L: Linear Transform X,: Prior Estimate

Solution:
X, =X, + (AHA + )LzLHL)_lAH(b - Ax,)
An example ¥4

/o

X, =0

Jox.



SENSE, 12 coils

[/
P1

/s




Regularization — Iterative Methods

p =argmin{|[Ep —s|, + A[|Lp]}

Equivalent to solving:

Measured data —>| 'S E
Vector of zeros —> 0 o L p

Regularized non-Cartesian SENSE could be implemented as:

% s: vector of acquired data

E @(x,tr) e reg non cartesian SENSE(x, csm, nufft st, w, tr);
img = 1lsqr(E, [s .* repmat(sqgrt(w),[size(csm,3),1]);zeros(imgele,1l)], 1le-3,30);
img = reshape(img,size(csm,1l),size(csm,2));

ismrm demo regularization iterative sense.m



Reconstruction

SNR

Regularization — Iterative Methods

Unregularized Regularized

ismrm demo regularization iterative sense.m



Regularization — Iterative Methods

> = argmin {|Ep — 51|, + N Lol

e T

o

-




SPIRIT Approach

k-space points can be synthesized from neighbors

Full k-space

Lustig and Pauly. Magn Reson Med. 2010



SPIRIT Approach

We can formulate the reconstruction problem in k-space as:

X = arg mxin {|Dx —y|l, + A |Gx — x|, }

Cartebian k-space solution.

Sangpling operator (e.g. onto\non-Cartesian k-space)
pled data

IRIT convolution operator

A< O X

Can be applied as multiplication in image space

Could also be sampling operator from image to k-space

Lustig and Pauly. Magn Reson Med. 2010



Spiral Imaging Example

Gridding SENSE SPIRIT

ismrm demo non cartesian.m



Summary

" Noise decorrelation is used to reduce the impact of varying
noise levels in receive channels.

= SNR scaled reconstruction are a way to evaluate
reconstructions directly on the images.

= Pseudo Replica Method allows the formation of SNR scaled
images in methods where unmixing coefficients are not

explicitly obtained

= |[terative methods can be used for both Cartesian and non-
Cartesian methods

= Regularization can be added to iterative methods in a
straightforward fashion
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EXERCISES



1. Getting Started

Load exercise data

load hansen exercises.mat
whos

Reconstruct aliased images
- Observations, noise!

Do SENSE reconstruction
- Calculate SENSE unmixing
- Apply unmixing




2. Noise

Generate noise covariance matrix
- noise color
- Observations, is this a good coil?

Do noise pre-whitening

help ismrm calculate noise decorrelation mtx
help ismrm apply noise decorrelation mtx

Do SENSE reconstruction
- Compare to before prewhitening




3. SNR Scaled Reconstruction

Analyse FFT to image space.
- Scaling!?
- How to set the scale factor

Do SENSE reconstruction

Create SNR image and g-map



4. Pseudo replica method

Do 100 reps of SENSE recon (just unmixing part)

Calculate standard deviation of the noise

Create SNR image and g-map



5. Non-Cartesian

Reconstruct aliased images using nufft

Setup encoding matrix anonymous function

ismrm encoding non cartesian SENSE.m

Reconstruct non-Cartesian SENSE

Explore non-Cartesian Demo

ismrm demo non cartesian.m




