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Noise in Parallel Imaging 
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Basic MRI signal equation with coil sensitivity endowing looks like:
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⇢(x) : The imaged object.

S
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(k) : Signal in receiver coil � at position k in k-space.
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We can write this as matrix equation:
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s = E⇢ (5)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

⇢ = E†s (6)

where E†
is the inverse of E when an inverse exists or more generally the pseudo-inverse of

E. All parallel imaging reconstruction algorithms aim to find some approximate solution to

1

Idealized Experiment:	



In practice, we are affected by noise	



Noise correlation 

Noise covariance matrix 

Ψϒ,ϒ’ = 〈ηϒ, ηϒ’〉 

% Matlab!
% eta:[Ncoils, Nsamples]!
Psi = (1/(Nsamples-1))*(eta * eta');!

We can measure this noise covariance:	





“Normal Coil”	

 “Broken Coil”	



Psi Examples – 32 Channel Coil 

Examination of the noise covariance matrix is an important QA tool. Reveals broken 
elements, faulty pre-amps, etc. 	





Noise Pre-Whitening 

Solving Linear Equations:	
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Suppose you know that:	
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Put less weight on this equation	





Noise Pre-Whitening 

We would like to apply an operation such that we have unit variance in all 
channels:	





Noise Pre-Whitening 

More generally, we want to weigh the equations with the “inverse square 
root” of the noise covariance, if	
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We will solve:	
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Or:	



In practice, we simply generate “pre-whitened” input data before recon	





Noise Pre-Whitening 

%eta [Ncoils,Nsamples]!
%psi [Ncoils,Ncoils]!
%data [Ncoils,Nsamples]!
%csm : Coil sensitivity map!
!
psi = (1/(Nsamples-1))*(eta * eta');!
!
L = chol(psi,'lower');!
L_inv = inv(L);!
!
data = L_inv * data;!
csm = L_inv * csm;!
 !
%Now noise is “white”!
%Reshape data and do recon!
!

Matlab:	





Noise covariance matrix 

“Normal Coil”	

 “Broken Coil”	



At least two broken pre-amps	



Example with test dataset	





Noise Pre-Whitening – SENSE Example 
White Noise	

 “Normal Coil”	

 “Broken Coil”	
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ismrm_demo_noise_decorrelation.m!



SENSE – Image Synthesis with Unmixing 
Coefficients 

Aliased coil images	

 Unmixing Coefficients	



.* 	





SENSE – Simple Rate 4 Example 

F : Image formation matrix

L : Linear transform

s =
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Reconstruction in SNR Units 

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)	



Raw data	



Calibration Data	

 Unmixing Coefficients	



Signal Processing	

 Images	



Reconstruction Pipeline	





Reconstruction in SNR Units 

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)	



Raw data	



Calibration Data	

 Unmixing Coefficients	



Signal Processing	

 Images	



Reconstruction Pipeline	



Noise	
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RSS	



Images	



Maintain unit scaling	



divide	



SNR Units	





Reconstruction in SNR Units 

Kellman et al., Magnetic Resonance in Medicine 54:1439 –1447 (2005)	



Reconstruction	

 g-map	

 SNR Units	



~SNR 8	

 ~SNR 20	





Pseudo-Replica Method 

What if unmixing coefficients are never explicitly formed:	



Raw data	

 SNR Scaled Recon	

 Reference Image	
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Add noise      	
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SNR Scaled Recon	


Pseudo 	


Replicas	



subtract	



Repeat X times	



Noise	


Replicas	



Mean	


Signal	



Noise	


SD	



SNR	



ismrm_pseudo_replica.m 



Pseudo-Replica Method – Example 256 trials 

SNR UNMIX	

 SNR PSEUDO	

 SNR UNMIX	

 SNR PSEUDO	



g UNMIX	

 g PSEUDO	

 g UNMIX	

 g PSEUDO	



SENSE R4	

 GRAPPA R4	





Advantage of Cartesian Undersampling 

Cartesian Undersampling 

“Random” Undersampling 



Non-Cartesian Parallel MRI 

To solve the general non-Cartesian case, we return to the original problem:	



Basic MRI signal equation with coil sensitivity endowing looks like:

S

�

(k) =

Z
⇢(x)C

�

(x)e

�i2⇡kx
dx (1)

⇢(x) : The imaged object.

S

�

(k) : Signal in receiver coil � at position k in k-space.

C

�

(x) : Complex sensitivity of coil �

e

�i2⇡kx
: Fourier encoding.

We can write this as matrix equation:

s
�

= FC
�

⇢ (2)

F =

2

6664

e

�i2⇡k1x1
e

�i2⇡k1x2
. . . e

�i2⇡k1x
N

x

e

�i2⇡k2x1
e

�i2⇡k2x2
. . . e

�i2⇡k2x
N

x

.

.

.

.

.

.

e

�i2⇡k
N

k

x1
e

�i2⇡k
N

k

x2
. . . e

�i2⇡k
N

k

x

N

x

3

7775
(3)

C
�

=

2

6664

C

�

(x1)

C

�

(x2)

.

.

.

C

�

(x

N

x

)

3

7775
(4)
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where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

⇢ = E†s (6)

where E†
is the inverse of E when an inverse exists or more generally the pseudo-inverse of

E. All parallel imaging reconstruction algorithms aim to find some approximate solution to

1

It is not practical to solve with direct inversion in general.	



Basic MRI signal equation with coil sensitivity endowing looks like:
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where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (7)

˜⇢ : Reconstruction.

E

†
: Pseudo Inverse of E.

˜⇢ = E

†
s = FLs (8)
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But we can use a number of different iterative solvers to arrive at the solution	


	



•  Conjugate Gradients	


•  LSQR (Matlab)	



>> help lsqr!
 lsqr   lsqr Method.!
    X = lsqr(A,B) attempts to solve the system of linear equations A*X=B!
    for X if A is consistent, otherwise it attempts to solve the least!
    squares solution X that minimizes norm(B-A*X)... !
!
    X = lsqr(AFUN,B) accepts a function handle AFUN instead of the matrix A.!
    AFUN(X,'notransp') accepts a vector input X and returns the!
    matrix-vector product A*X while AFUN(X,'transp') returns A'*X. In all!
    of the following syntaxes, you can replace A by AFUN...!



Iterative SENSE – First Cartesian 

To use LSQR (or Conjugate Gradients), we “just” need to be able to write a function 
that does the multiplication with E and EH:	



rho = zeros(size(csm)); %csm: coil sensitivities!
%sampling_mask: 1 where sampled, zero where not!
rho(repmat(sampling_mask,[1 1 size(csm,3)]) == 1) = s(:);!
rho = ismrm_transform_kspace_to_image(rho,[1,2]);!
rho = sum(conj(csm) .* rho,3);!

Multiplication with EH	



s = repmat(reshape(rho,size(csm,1),size(csm,2)),[1 1 size(csm,3)]) .* csm;!
s = ismrm_transform_image_to_kspace(s, [1,2]);!
s= s(repmat(sampling_mask,[1 1 size(csm,3)]) == 1);!

Multiplication with E	



Let’s first look at a simple Cartesian case	





function o =  e_cartesian_SENSE(inp, csm, sp, transpose_indicator)!
% sp: sampling pattern!
% csm: coil sensitivities!

% s: vector of acquired data!
E = @(x,tr) e_cartesian_SENSE(x,csm,(sp > 0),tr);!
img = lsqr(E, s, 1e-5,50);!
img = reshape(img,size(csm,1),size(csm,2));!

Iterative SENSE could be implemented as:	



If we have the multiplication with E and EH implemented as a Matlab function:	



Iterative SENSE 

Cartesian SENSE	

 Iterative SENSE	





Quick note on the non-uniform FFT 
To implement multiplication with E and EH in the non-Cartesian case, we need to do 
the non-uniform Fourier transform1,2. 	


	


In this course, we will use Jeff Fesslers “nufft” package. We recommend you 
download the latest version from: 	


	



http://web.eecs.umich.edu/~fessler/irt/fessler.tgz	



1Keiner, J., Kunis, S., and Potts, D. Using NFFT 3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software, 2009	


2Fessler J and Sutton B. Nonuniform fast Fourier transforms using min-max interpolation. IEEE TSP 2003	



%k: k-space coordinates [Nsamples, 2], range –pi:pi!
%w: Density compensation weights!
%s: Data!
!
%Prepare NUFFT!
N = [256 256]; %Matrix size!
J = [5 5];     %Kernel size!
K = N*2;       %Oversampled Matrix size!
nufft_st = nufft_init(k,N,J,K,N/2,'minmax:kb');!
!
recon = nufft_adj(s .* repmat(w,[1 size(s,2)]),nufft_st);!



Iterative SENSE – non-Cartesian 

To use LSQR (or Conjugate Gradients), we “just” need to be able to write a function 
that does the multiplication with E and EH:	



samples = size(nufft_st.om,1); coils = numel(s)/samples;!
s = reshape(s,samples,coils);!
rho = nufft_adj(s .* repmat(sqrt(w),[1 coils]),nufft_st)./sqrt(prod(nufft_st.Kd));!
rho = sum(conj(csm) .* rho,3);!
rho = rho(:);!

Multiplication with EH	



s = repmat(reshape(rho,size(csm,1),size(csm,2)),[1 1 size(csm,3)]) .* csm;!
s = nufft(s,nufft_st)./sqrt(prod(nufft_st.Kd));!
s = s .*repmat(sqrt(w),[1 size(s,2)]);!
s = s(:);!

Multiplication with E	



Now we have the tools for the non-Cartesian case:	



From nufft_init!
Ensure operators are adjoint	





function o = e_non_cartesian_SENSE(inp, csm, nufft_st, w, transpose_indicator)!
% nufft_st: From nufft_init!
% csm: coil sensitivities, w: density compensation!

% s: vector of acquired data!
E = @(x,tr) e_non_cartesian_SENSE(x, csm, nufft_st, w, tr);!
img = lsqr(E, s .* repmat(sqrt(w),[size(csm,3),1]), 1e-3,30);!
img = reshape(img,size(csm,1),size(csm,2));!

Non-Cartesian SENSE could be implemented as:	



If we have the multiplication with E and EH implemented as a Matlab function:	



Iterative SENSE – non-Cartesian 

Due to definition of E	



Fully sampled	


24 projections	



nufft only	


24 projections	



SENSE	





Regularization - Basics 

Adding constraints: 

€ 

xλ = argmin Ax −b 2 + λ L(x − x0) 2{ }

Solution: 

€ 

xλ = x0 + AHA + λ2LHL( )−1AH(b −Ax0)

:  Linear Transform :  Prior Estimate € 

x = AHA( )−1AHb

An example 

  

€ 
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x = argmin Ax −b 2{ }

€ 

λ L(x − x0) 2



SENSE, 12 coils 
R = 1 R = 2 R = 4 R = 8 



Regularization – Iterative Methods 

Basic MRI signal equation with coil sensitivity endowing looks like:
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s = E⇢ (5)
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{kE⇢� sk2} (6)

˜⇢ = argmin

⇢
{kE⇢� sk2 + � kL⇢k2} (7)

where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (8)
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Measured data	



Vector of zeros	



Basic MRI signal equation with coil sensitivity endowing looks like:
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where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. ??. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (9)

1

Equivalent to solving: 	



% s: vector of acquired data!
E = @(x,tr) e_non_cartesian_SENSE(x, csm, nufft_st, w, tr);!
img = lsqr(E, s .* repmat(sqrt(w),[size(csm,3),1]), 1e-3,30);!
img = reshape(img,size(csm,1),size(csm,2));!

Regularized non-Cartesian SENSE could be implemented as:	



% s: vector of acquired data!
E = @(x,tr) e_reg_non_cartesian_SENSE(x, csm, nufft_st, w, tr);!
img = lsqr(E, [s .* repmat(sqrt(w),[size(csm,3),1]);zeros(imgele,1)], 1e-3,30);!
img = reshape(img,size(csm,1),size(csm,2));!

ismrm_demo_regularization_iterative_sense.m!



Regularization – Iterative Methods 
Unregularized	

 Regularized	
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ismrm_demo_regularization_iterative_sense.m!



Regularization – Iterative Methods 

Basic MRI signal equation with coil sensitivity endowing looks like:
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where s is the vector of measured data in k-space, ⇢ is the imaged object and E is

the encoding matrix. Each row in the encoding matrix represents encoding of one specific

location in k-space, i.e. equivalent to Eq. 1. Parallel Imaging reconstruction is the task of

inverting the system of equations in Eq. ??, i.e.:

˜⇢ = E

†
s (8)
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λ=0.1	

 λ=0.5	

 λ=0.8	

 λ=1.0	



λ=1.2	

 λ=1.5	

 λ=2.0	

 λ=5.0	





k-space points can be synthesized from neighbors	



SPIRiT Approach 

Lustig and Pauly. Magn Reson Med. 2010 	



Full k-space	



*	
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SPIRiT Approach 

Lustig and Pauly. Magn Reson Med. 2010 	
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x : Cartesian k-space solution.

D : Sampling operator (e.g. onto non-Cartesian k-space)

y : Sampled data

G : SPIRiT convolution operator

3

We can formulate the reconstruction problem in k-space as:	



Could also be sampling operator from image to k-space	



Can be applied as multiplication in image space	





Spiral Imaging Example 

Gridding	

 SENSE	

 SPIRiT	



ismrm_demo_non_cartesian.m!



Summary 

§ Noise decorrelation is used to reduce the impact of varying 
noise levels in receive channels. 

§ SNR scaled reconstruction are a way to evaluate 
reconstructions directly on the images. 

§ Pseudo Replica Method allows the formation of SNR scaled 
images in methods where unmixing coefficients are not 
explicitly obtained 

§  Iterative methods can be used for both Cartesian and non-
Cartesian methods 

§ Regularization can be added to iterative methods in a 
straightforward fashion 
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Download code, examples:	


http://gadgetron.sf.net/sunrise	





EXERCISES 



1. Getting Started 

Load exercise data	


load hansen_exercises.mat!
whos!

Reconstruct aliased images 	


-  Observations, noise?	



Do SENSE reconstruction	


-  Calculate SENSE unmixing 	


-  Apply unmixing	





2. Noise 

Do SENSE reconstruction	


-  Compare to before prewhitening	



Do noise pre-whitening	



Generate noise covariance matrix	


-  noise_color	


-  Observations, is this a good coil?	



help ismrm_calculate_noise_decorrelation_mtx!
help ismrm_apply_noise_decorrelation_mtx!



3. SNR Scaled Reconstruction 

Create SNR image and g-map	



Do SENSE  reconstruction	



Analyse FFT to image space. 	


-  Scaling?	


-  How to set the scale factor	





4. Pseudo replica method 

Create SNR image and g-map	



Calculate standard deviation of the noise	



Do 100 reps of SENSE recon (just unmixing part)	





5. Non-Cartesian 

Reconstruct non-Cartesian SENSE	



Setup encoding matrix anonymous function	



Reconstruct aliased images using nufft	



!
 ismrm_encoding_non_cartesian_SENSE.m!
!

Explore non-Cartesian Demo	


!
 ismrm_demo_non_cartesian.m!
!


